Electron capture is a process in which a proton-rich nuclide absorbs an inner atomic electron, thereby changing a nuclear proton to a neutron and simultaneously causing the emission of an electron neutrino. Various photon emissions follow, as the energy of the atom falls to the ground state of the new nuclide.
Electron capture is the primary decay mode for isotopes with a relative superabundance of protons in the nucleus, but with insufficient energy difference between the isotope and its prospective daughter (the isobar with one less positive charge) for the nuclide to decay by emitting a positron. Electron capture is an alternate decay mode for radioactive isotopes with insufficient energy to decay by positron emission. It is sometimes called inverse beta decay, though this term can also refer to the interaction of an electron antineutrino with a proton.
If the energy difference between the parent atom and the daughter atom is less than 1.022Â MeV, positron emission is forbidden as not enough decay energy is available to allow it, and thus electron capture is the sole decay mode. For example, rubidium-83 (37Â protons, 46Â neutrons) will decay to krypton-83 (36Â protons, 47Â neutrons) solely by electron capture (the energy difference, or decay energy, is about 0.9Â MeV).
A free proton cannot normally be changed to a free neutron by this process; the proton and neutron must be part of a larger nucleus. In the process of electron capture, one of the orbital electrons, usually from the K or L electron shell (K-electron capture, also K-capture, or L-electron capture, L-capture), is captured by a proton in the nucleus, forming a neutron and emitting an electron neutrino.
Since a proton is changed to a neutron during electron capture, the number of neutrons in the nucleus increases by 1, the number of protons decreases by 1, and the atomic mass number remains unchanged. By changing the number of protons, electron capture transforms the nuclide into a new element. The atom, although still neutral in charge, now exists in an excited state with the inner shell missing an electron. An outer shell electron will eventually transition to fill the missing inner electron thereby dropping to a lower ground state. During this process, that electron will emit an X-ray photon (a type of electromagnetic radiation) and other electrons may also emit Auger electrons. Often the nucleus exists in an excited state as well, and emits a gamma ray as it transitions to the ground state energy of the new nuclide.
§History
The theory of electron capture was first discussed by Gian-Carlo Wick in a 1934 paper, and then developed by Hideki Yukawa and others. K-electron capture was first observed by Luis Alvarez, in vanadium-48. He reported it in a 1937 paper in the Physical Review. Alvarez went on to study electron capture in gallium-67 and other nuclides.
§Reaction details
The electron that is captured is one of the atom's own electrons, and not a new, incoming electron, as might be suggested by the way the above reactions are written. Radioactive isotopes that decay by pure electron capture can be inhibited from radioactive decay if they are fully ionized ("stripped" is sometimes used to describe such ions). It is hypothesized that such elements, if formed by the r-process in exploding supernovae, are ejected fully ionized and so do not undergo radioactive decay as long as they do not encounter electrons in outer space. Anomalies in elemental distributions are thought to be partly a result of this effect on electron capture. Inverse decays can also be induced by full ionisation; for instance, 163Ho decays into 163Dy by electron capture; however, a fully ionised 163Dy decays into a bound state of 163Ho by the process of bound-state βâ' decay.
Chemical bonds can also affect the rate of electron capture to a small degree (in general, less than 1%) depending on the proximity of electrons to the nucleus. For example in 7Be, a difference of 0.9% has been observed between half-lives in metallic and insulating environments. This relatively large effect is due to the fact that beryllium is a small atom whose valence electrons are close to the nucleus.
Around the elements in the middle of the periodic table, isotopes that are lighter than stable isotopes of the same element tend to decay through electron capture, while isotopes heavier than the stable ones decay by electron emission. Electron capture happens most often in the heavier neutron-deficient elements where the mass change is smallest and positron emission isn't always possibl When the loss of mass in a nuclear reaction is greater than zero but less than 2m[0-1e-], the process cannot occur by positron emission but is spontaneous for electron capture.
§Common examples
Some common radioisotopes that decay by electron capture include:
For a full list, see the table of nuclides.
§References
§External links
- The LIVEChart of Nuclides - IAEA with filter on electron capture
0 komentar :
Posting Komentar