Gnetophyta





The plant division Gnetophyta consists of only three genera of woody plants grouped in the gymnosperms. The living gnetophytes are a handful of survivors of a group that was diverse and dominant in the Tertiary, and fossilized pollen attributed to a close relative of one of them, Ephedra, has been identified in the Early Cretaceous. They now comprise some 70 species across the three relict genera Gnetum (family Gnetaceae), Welwitschia (family Welwitschiaceae), and Ephedra (family Ephedraceae).

The gnetophytes differ from other gymnosperms (i.e. conifers, cycads, and ginkgos) in having vessel elements (which transport water within the plant) like those found in flowering plants. As a group the Gnetophyta are the gymnosperms' closest relations to the flowering plants. Among themselves, the gnetophytes' evolutionary inter-relationships remain unclear, however: in some classifications, all three genera are placed in a single order (Gnetales), while in other classifications they are distributed among three orders, each containing a single family and genus. Most morphological and molecular studies confirm that Gnetum and Welwitschia diverged from each other more recently than from Ephedra.

Ecology and morphology


Gnetophyta

The three genera of the gnetophytes are highly specialized to their respective environments, making it difficult to identify homologous characters. The three extant genera of gnetophytes, a "bizarre and enigmatic" trio, are likely aberrant members of the group. Some synapomorphies of the gnetophytes include enveloping bracts around the ovules and microsporangia, and a micropylar projection of the outer membrane of the ovule that produces a pollination droplet.

Gnetum species are mostly woody climbers in tropical forests. However, the best-known member of this group, Gnetum gnemon, is a tree. In Malaya, where it is native, its seeds are used to produce a crispy krupuk snack known as emping or krupuk belinjo.

Welwitschia comprises only one species, Welwitschia mirabilis. It grows only in the extremely dry deserts of Namibia and Angola. This strange ground-hugging species has only two large strap-like leaves that grow continuously from the base throughout the plant's life.

Plants of the genus Ephedra are known as "jointfirs" in the western United States because they have long slender branches which bear tiny scale-like leaves at their nodes. Infusions from Ephedra have been traditionally used as a stimulant, but ephedrine is a controlled substance today in many jurisdictions because of the risk of harmful or even fatal overdosing.

Fossil Gnetophyta


Gnetophyta

Knowledge of fossils of the gnetophytes has increased greatly since the 1980s. There are fossils from the Permian, the Triassic, and the Jurassic which may belong to the gnetophytes, but this is uncertain. The fossil record is richer starting in the early Cretaceous, with fossils of plants as well as seeds and pollen which can be clearly assigned to the gnetophytes.

Classification



With just three well-defined genera within an entire division, there still is understandable difficulty in establishing an unambiguous interrelationship among them; in earlier times matters were even more difficult and we find for example Pearson in the early 20th century speaking of the class Gnetales, rather than the order. G. H. M. Lawrence referred to them as an order, but remarked that the three families were distinct enough to deserve recognition as separate orders. Foster & Gifford accepted this principle, and placed the three orders together in a common class for convenience, which they called Gnetopsida. In general the evolutionary relationships among the seed plants still are unresolved, and the Gnetophyta have played an important role in the formation of phylogenetic hypotheses. Molecular phylogenies of extant gymnosperms have conflicted with morphological characters with regard to whether the gymnosperms as a whole (including gnetophytes) comprise a monophyletic group or a paraphyletic one that gave rise to angiosperms. At issue is whether the Gnetophyta are the sister group of angiosperms, or whether they are sister to, or nested within, other extant gymnosperms. Numerous fossil gymnosperm clades once existed that are morphologically at least as distinctive as the four living gymnosperm groups, such as Bennettitales, Caytonia and the glossopterids. When these gymnosperm fossils are considered, the question of gnetophyte relationships to other seed plants becomes even more complicated. Several hypotheses, illustrated below, have been presented to explain seed plant evolution.

Recent research by Lee EK, Cibrian-Jaramillo A, et al. (2011) suggests that the Gnetophyta are a sister group to the rest of the gymnosperms, contradicting the anthophyte hypothesis, which held that gnetophytes were sister to the flowering plants.

Anthophyte hypothesis

From the early twentieth century, the anthophyte hypothesis was the prevailing explanation for seed plant evolution, based on shared morphological characters between the gnetophytes and angiosperms. In this hypothesis, the gnetophytes, along with the extinct order Bennettitales, are sister to the angiosperms, forming the "anthophytes". Some morphological characters that were suggested to unite the anthophytes include vessels in wood, net-veined leaves (in Gnetum only), lignin chemistry, the layering of cells in the apical meristem, pollen and megaspore features (including thin megaspore wall), short cambial initials, and lignin syringal groups. However, most genetic studies have rejected the anthophyte hypothesis. Several of these studies have suggested that the gnetophytes and angiosperms have independently derived characters, including flower-like reproductive structures and tracheid vessel elements, that appear shared but are actually the result of parallel evolution.

Gnetifer hypothesis

In the gnetifer hypothesis, the gnetophytes are sister to the conifers, and the gymnosperms are a monophyletic group, sister to the angiosperms. The gnetifer hypothesis first emerged formally in the mid-twentieth century, when vessel elements in the gnetophytes were interpreted as being derived from tracheids with circular bordered pits, as in conifers. It did not gain strong support, however, until the emergence of molecular data in the late 1990s. Although the most salient morphological evidence still largely supports the anthophyte hypothesis, there are some more obscure morphological commonalities between the gnetophytes and conifers that lend support to the gnetifer hypothesis. These shared traits include: tracheids with scalariform pits with tori interspersed with annular thickenings, absence of scalariform pitting in primary xylem, scale-like and strap-shaped leaves of Ephedra and Welwitschia; and reduced sporophylls.

Gnepine hypothesis

The gnepine hypothesis is a modification of the gnetifer hypothesis, and suggests that the gnetophytes belong within the conifers as a sister group to the Pinaceae. According to this hypothesis, the conifers as currently defined are not a monophyletic group, in contrast with molecular findings that support its monophyly. All existing evidence for this hypothesis comes from molecular studies within the last decade. However, the morphological evidence remains difficult to reconcile with the gnepine hypothesis. If the gnetophytes are nested within conifers, they must have lost several shared derived characters of the conifers (or these characters must have evolved in parallel in the other conifer lineages): narrowly triangular leaves (gnetophytes have diverse leaf shapes), resin canals, a tiered proembryo, and flat woody ovuliferous cone scales. These kinds of major morphological changes are not without precedent in the Pinaceae, however: the Taxaceae, for example, have lost the classical cone of the conifers in favor of a single-terminal ovule surrounded by a fleshy aril.

Gnetophyte-sister hypothesis

Some partitions of the genetic data suggest that the gnetophytes are sister to all of the other extant seed plant groups. However, there is no morphological evidence nor examples from the fossil record to support the gnetophyte-sister hypotheses.

References



Other Sources:

  • Gifford, Ernest M., Adriance S. Foster. 1989. Morphology and Evolution of Vascular Plants. Third edition. WH Freeman and Company, New York.
  • Hilton, Jason, and Richard M. Bateman. 2006. Pteridosperms are the backbone of seed-plant phylogeny. Journal of the Torrey Botanical Society 133: 119-168 (abstract)


Share on Google Plus

About Unknown

This is a short description in the author block about the author. You edit it by entering text in the "Biographical Info" field in the user admin panel.
    Blogger Comment
    Facebook Comment

0 komentar :

Posting Komentar