Prebiotic (nutrition)





Prebiotics is a general term to refer to chemicals that induce the growth and/or activity of commensal microorganisms (e.g., bacteria and fungi) that contribute to the well-being of their host. The most common example is in the gastrointestinal tract, where prebiotics can alter the composition of organisms in the gut microbiome. However, in principle it is a more general term that can refer to other areas of the body as well. For example, certain hand moisturizers have been proposed to act as prebiotics to improve the activity and/or composition of the skin microbiota.

In diet, prebiotics are typically non-digestible fiber compounds that pass undigested through the upper part of the gastrointestinal tract and stimulate the growth and/or activity of advantageous bacteria that colonize the large bowel by acting as substrate for them. They were first identified and named by Marcel Roberfroid in 1995. As a functional food component, prebiotics, like probiotics, are conceptually intermediate between foods and drugs. Depending on the jurisdiction, they typically receive an intermediate level of regulatory scrutiny, in particular of the health claims made concerning them.

Roberfroid offered a refined definition in the March 2007 Journal of Nutrition stating:

A prebiotic is a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host well-being and health.

Additionally, in his 2007 revisit of prebiotics, Roberfroid stated that only two particular prebiotics then fully met this definition: trans-galactooligosaccharide and inulin. Resistant starch, Mannan Oligosaccharides (MOS) have been termed as prebiotics but would more correctly be termed immunosaccharides.

Researchers now also focus on the distinction between short-chain, long-chain, and full-spectrum prebiotics. "Short-chain" prebiotics, e.g. oligofructose, contain 2â€"8 links per saccharide molecule and are typically fermented more quickly in the right side of the colon providing nourishment to the bacteria in that area. Longer-chain prebiotics, e.g. inulin, contain 9-64 links per saccharide molecule, and tend to be fermented more slowly, nourishing bacteria predominantly in the left-side colon. Full-spectrum prebiotics provide the full range of molecular link-lengths from 2-64 links per molecule, and nourish bacteria throughout the colon, e.g. Oligofructose-Enriched Inulin (OEI). The majority of research done on prebiotics is based on full-spectrum prebiotics, typically using OEI as the research substance.

Function



The prebiotic definition does not emphasize a specific bacterial group. Generally, however, it is assumed that a prebiotic should increase the number and/or activity of bifidobacteria and lactic acid bacteria. The importance of the bifidobacteria and the lactic acid bacteria (LABs) is that these groups of bacteria may have several beneficial effects on the host, especially in terms of improving digestion (including enhancing mineral absorption) and the effectiveness and intrinsic strength of the immune system. A product that stimulates bifidobacteria is considered a bifidogenic factor. Some prebiotics may thus also act as a bifidogenic factor and vice versa, but the two concepts are not identical.

Sources



Chicory root is considered the richest natural source. Other traditional dietary sources of prebiotics include beans, Jerusalem artichoke, jicama, raw oats, unrefined wheat, unrefined barley, and yacon. Some of the oligosaccharides that naturally occur in breast milk are believed to play an important role in the development of a healthy immune system in infants.

While there is no broad consensus on an ideal daily serving of prebiotics, recommendations typically range from 4 to 8 grams (0.14â€"0.28 oz) for general digestive health support, to 15 grams (0.53 oz) or more for those with active digestive disorders. Given an average 6 grams (0.21 oz) serving, below are the amounts of prebiotic foods required to achieve a daily serving of prebiotic fiber:

Those wishing to ensure sufficient prebiotic intake should carefully consider the prebiotic content of their diet, as well as what caloric/nutritive load comes along with it: e.g., eating 600 grams (1.3 lb) of bananas daily is likely to provide an excess of calories and sugars/carbohydrates to the diet. Prebiotic fiber supplements with minimal caloric/fat/sugar load are also available.

Prebiotic oligosaccharides are increasingly added to foods for their health benefits. Some oligosaccharides that are used in this manner are fructooligosaccharides (FOS), xylooligosaccharides (XOS), polydextrose, and galactooligosaccharides (GOS). Moreover disaccharids like lactulose or some monosaccharides such as tagatose are also used sometimes as prebiotics.

Also in petfood, mannooligosaccharides are being used for prebiotic purposes.

Genetically engineering plants for the production of inulins has also become more prevalent, despite the still limited insight into the immunological mechanisms activated by such food supplementation.

Effects



Preliminary research has demonstrated potential effects on calcium and other mineral absorption, immune system effectiveness, bowel acidity, reduction of colorectal cancer risk, inflammatory bowel disease (Crohn's disease or ulcerative colitis) hypertension and defecation frequency. Prebiotics may be effective in decreasing the number of infectious episodes needing antibiotics and the total number of infections in children aged 0â€"24 months.

While research demonstrates that prebiotics lead to increased production of short-chain fatty acids (SCFA), more research is required to establish a direct causal connection. Prebiotics may be beneficial to inflammatory bowel disease or Crohn's disease through production of SCFA as nourishment for colonic walls, and mitigation of ulcerative colitis symptoms.

The immediate addition of substantial quantities of prebiotics to the diet may result in an increase in fermentation, leading to increased gas production, bloating or bowel movement. Production of SCFA and fermentation quality are reduced during long-term diets of low fiber intake. Until bacterial flora are gradually established to rehabilitate or restore intestinal bacteria, nutrient absorption may be impaired and colonic transit time temporarily increased with an immediate addition of higher prebiotic intake.

See also



  • Prebiotic scores
  • Probiotic
  • Mannan Oligosaccharides (MOS)

References



Further reading



  • Frank W. Jackson, "PREbiotics, not Probiotics". December 2, 2013, Jacksong GI Medical. ISBN 978-0991102709.

External links



  • International Scientific Association for Probiotics and Prebiotics


Share on Google Plus

About Unknown

This is a short description in the author block about the author. You edit it by entering text in the "Biographical Info" field in the user admin panel.
    Blogger Comment
    Facebook Comment

0 komentar :

Posting Komentar