Sodium azide is the inorganic compound with the formula NaN3. This colorless salt is the gas-forming component in many car airbag systems. It is used for the preparation of other azide compounds. It is an ionic substance, is highly soluble in water, and is very acutely toxic.
§Structure and preparation
Sodium azide is an ionic solid. Two crystalline forms are known, rhombohedral and hexagonal. The azide anion is very similar in each, being centrosymmetric with Nâ"N distances of 1.18 Ã
. The Na+
ion is pentacoordinated.
The common synthesis method is the "Wislicenus process," which proceeds in two steps from ammonia. In the first step, ammonia is converted to sodium amide:
- 2 Na + 2 NH3 â' 2 NaNH2 + H2
The sodium amide is subsequently combined with nitrous oxide:
- 2 NaNH2 + N2O â' NaN3 + NaOH + NH3
Curtius and Thiele developed another production process where a nitrite ester is converted to sodium azide using hydrazine. This method is well suited for laboratory preparation of sodium azide:
- 2 NaNO2 + 2 C2H5OH +H2SO4 â' 2 C2H5ONO + Na2SO4 + 2 H2O
- C2H5ONO + N2H4-H2O + NaOH â' NaN3 + C2H5OH + 3 H2O
Alternatively the salt can be obtained by the reaction of sodium nitrate with sodium amide.
§Applications
§Automobile airbags and airplane escape chutes
Older airbag formulations contained mixtures of oxidizers and sodium azide and other agents including ignitors and accelerants. An electronic controller detonates this mixture during an automobile crash:
- 2 NaN3 â' 2Na + 3 N2
The same reaction occurs upon heating the salt to approximately 300 °C. The sodium that is formed is a potential hazard alone and, in automobile airbags, it is converted by reaction with other ingredients, such as potassium nitrate and silica. In the latter case, innocuous sodium silicates are generated. Sodium azide is also used in airplane escape chutes. Newer generation air bags contain nitroguanidine or similar less sensitive explosives.
§Organic and inorganic synthesis
Due to its explosion hazard, sodium azide is of only limited value in industrial scale organic chemistry. In the laboratory, it is used in organic synthesis to introduce the azide functional group by displacement of halides. The azide functional group can thereafter be converted to an amine by reduction with either SnCl2 in ethanol or lithium aluminium hydride or a tertiary phosphine, such as triphenylphosphine in the Staudinger reaction, with Raney nickel or with hydrogen sulfide in pyridine.
Sodium azide is a versatile precursor to other inorganic azide compounds, e.g., lead azide and silver azide, which are used in explosives.
§Biochemistry and biomedical uses
Sodium azide is a useful probe reagent, mutagen, and preservative. In hospitals and laboratories, it is a biocide; it is especially important in bulk reagents and stock solutions which may otherwise support bacterial growth where the sodium azide acts as a bacteriostatic by inhibiting cytochrome oxidase in gram-negative bacteria; gram-positive (streptococci, pneumococci, lactobacilli) are intrinsically resistant. It is also used in agriculture for pest control.
Azide inhibits cytochrome oxidase by binding irreversibly to the heme cofactor in a process similar to the action of carbon monoxide. Sodium azide particularly affects organs that undergo high rates of respiration, such as the heart and the brain.
§Reactions
Treatment of sodium azide with strong acids gives hydrazoic acid, which is also extremely toxic:
- H+
+ Nâ'
3 â' HN
3
Aqueous solutions contain minute amounts of hydrogen azide, as described by the following equilibrium:
- Nâ'
3 + H
2O HN
3 + OHâ'
(K = 10â'4.6
)
Sodium azide can be destroyed by treatment with nitrous acid solution:
- 2 NaN3 + 2 HNO2 â' 3 N2 + 2 NO + 2 NaOH
§Safety considerations
Sodium azide is a severe poison. It may be fatal in contact with skin or if swallowed. Even minute amounts can cause symptoms. The toxicity of this compound is comparable to that of soluble alkali cyanides and the lethal dose for an adult human is about 0.7 grams. No toxicity has been reported from spent airbags.
§References
§External links
- International Chemical Safety Card 0950.
- NIOSH Pocket Guide to Chemical Hazards.
- Straight Dope on Sodium Azide
0 komentar :
Posting Komentar